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Abstract	
	
Robotics	 has	 always	 faced	 the	 issue	 of	 adaptability	 to	 new	 environments	 and	

new	 situations.	 To	 create	 an	 adaptive	behaviour,	we	make	 the	 agent	 create	 its	

own	model	 of	 the	 environment.	We	 design	 Sleep-Wake	 cycles	 to	 structure	 the	

behaviour	of	the	agent	into	learning,	then	problem	solving.	By	using	a	model	of	

the	environment	 to	predict	 future	movement,	we	can	simulate	all	 robotic	 trial-

and-error,	decreasing	the	amount	of	real	 time	needed	to	get	a	solution.	Results	

show	 one	 cycle	 performs	 nearly	 as	 well	 as	 the	 optimal	 answer,	 with	 a	

generalised	 behaviour	 generated	 from	 a	 short	 prediction,	 and	 solving	 the	

problem	in	less	time	than	trial-and-error.	
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1. 	Introduction	
	
In	the	event	of	limb	damage,	humans	and	animals	can	correct	their	movements	
by	compensating	for	the	damaged	mechanic.	 	Unlike	animals,	machines	lack	the	
ability	to	adapt	their	behaviour	in	the	event	of	an	unexpected	change,	or	predict	
new	 outcomes	 in	 an	 unseen	 territory.	 Robots	 are	 given	 precise,	 unbreakable	
rules	that	do	not	change	over	time,	and	they	do	not	try	to	predict	the	outcome	of	
an	action,	as	it	should	never	change.	To	build	a	more	intelligent	machine,	we	try	
to	 simulate	 an	 understanding	 of	 the	 environment	 so	 it	 can	 generate	 new	
behaviours.		
	
Many	 modern	 machines	 are	 given	 increasingly	 complex	 models	 of	 their	
environment	 and	 the	 complicated	 equations	 of	 behaviours.	 This	 research	 will	
focus	 on	 the	 opposite	 approach:	 giving	 the	 agents	 a	 simpler	 model	 of	 their	
environment	 in	 the	 hope	 they	 can	 create	 their	 own	 simple	 behaviours.	 The	
model	 will	 not	 be	 humanly	 understandable,	 nor	 will	 it	 visually	 depict	 the	
environment.	This	model	will	be	created	 through	a	NARX	neural	network.	This	
recurrent	 dynamical	 neural	 network	 will	 serve	 as	 a	 model	 for	 the	 robot	 to	
predict	future	behaviour.		
	
To	test	a	new	behaviour,	a	robot	would	have	to	execute	the	new	actions	 in	 the	
real	 world,	 and	 observe	 the	 result.	 This	 method	 would	 take	 an	 unreasonable	
amount	of	time	to	discover	a	new	behaviour.	We	are	therefore	looking	to	shift	all	
real-time	actions	to	offline	processing,	where	the	robot	can	use	its	understanding	
of	the	world	to	predict	its	next	behaviour.	
	
We	decide	to	name	the	active	movement	of	the	robot	a	“wake”	stage.	To	create	
an	 opportunity	 to	 do	 processing,	 we	 incorporate	 a	 “sleep”	 stage	 that	 can	 be	
considered	like	“thinking”.	The	robot	can	then	alternate	between	wake	stage	and	
sleep	stage	to	minimise	real	movement.	
	

	
	

Figure	1-1:	Caricature	of	a	robot	sampling	data	from	the	environment,	creating	a	model	of,	then	using	the	
model	to	predict	jumping	over	an	obstacle	before	executing	the	action.	
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2. Background	
In	 this	 section,	we	will	 explore	 the	 literature	 revolving	around	our	 research	 to	
set	the	basis	of	the	project.	

2.1. Self-models	
The	aim	of	Bongard’s	research	is	to	create	a	robot	capable	of	modelling	itself	to	
assess	 any	 damage	 done	 to	 the	 body	 [1].	 Their	 research	 consists	 of	 making	 a	
robot	create	models	of	its	body	and	pitch	them	against	each	other	to	asses	which	
is	more	 accurate,	 and	 then	 test	 the	predicted	behaviour	of	 the	model	 onto	 the	
robot’s	physical	body.	Our	research	is	closely	tied	to	theirs	 in	the	way	they	use	
cycles	to	explore,	model,	and	perform	actions.	Our	common	goal	 is	to	create	an	
autonomous	robot	able	to	use	models	to	better	control	its	behaviour	[2-4].	
	

� 	
Figure	2-1	Algorithm	used	in	Bongard’s	Resilient	Machines	through	Continuous	Self-Modelling 

They	 conclude	 the	 use	 of	 predictive	 models	 might	 lead	 to	 higher	 levels	 of	
machine	 cognition.	 However,	 their	 research	 is	 limited	 by	 the	 explicit	
representation	of	 the	body,	which	does	not	 represent	how	organisms	maintain	
self-models.	 In	 addition,	 they	 assess	 their	 models	 by	 visually	 checking	 with	 a	
human	eye	if	the	model	corresponds	to	the	robot’s	chassis.	This	might	lead	to	the	
development	 of	 biased	 models	 that	 try	 to	 mimic	 the	 physical	 representation,	
eliminating	 the	chance	of	 the	creation	of	a	more	accurate	model,	but	 that	does	
not	 visually	 correspond	 to	 the	 robot.	 They	 explain	 “the	 use	 of	 implicit	
representations	 such	as	artificial	neural	networks	–	although	more	biologically	
plausible	 than	 explicit	 simulation	 –	 would	 make	 the	 validation	 of	 our	 theory	
more	challenging”.	We	believe	the	assessment	of	a	model	should	be	purely	based	
on	the	level	of	functionality	and	accuracy	of	the	model.		
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2.2. Predictive	brains	&	Takens	Theorem	
A	recurrent	theme	in	research	around	neuroscience	and	robotics	is	the	thought	
that	 the	 brain	 is	 a	 predictive	 machine	 [5-8].	 The	 brain	 is	 described	 to	 be	 a	
network	of	cells	constantly	predicting	and	comparing	with	actual	results,	trying	
to	reduce	prediction	error.	Our	project	uses	this	theory	in	practice,	as	we	wish	to	
predict	 the	 future	movement	of	our	robot	 through	a	model.	The	more	accurate	
the	model	 of	 the	 environment,	 the	more	 accurate	 the	predictions	 in	 the	 future	
will	be.	
	
The	prediction	process	depends	on	the	system	we	are	basing	our	model	on.	The	
environment	 that	 is	 modelled	 can	 be	 described	 as	 a	 dynamical	 system	 with	
precise	states.	Our	predictions	therefore	depend	on	Takens	Theorem	[9],	which	
depicts	that	a	chaotic	dynamical	system	can	be	reconstructed	from	a	sequence	of	
observations	of	its	previous	states.	

2.3. Neural	networks	
Neural	 networks	 are	 a	 series	 of	 nodes	 and	 connections	 that	 mimic	 the	
functionality	of	a	brain’s	neurons	and	synapses.	Neural	networks	have	been	used	
in	 all	 sorts	 of	 research	 and	 are	 valued	 for	 their	 ability	 to	 learn	 patterns.	 A	
Recurrent	Neural	Network	(RNN)	allows	connections	to	form	a	cycle,	allowing	it	
to	produce	temporal	behaviour.	
	
RNNs	with	gradient	descent	are	good	at	 short-term	dependencies,	 for	example	
with	 the	 learning	of	 a	musical	 structure	 [10],	 however	 struggled	with	 learning	
the	global	behaviour.	This	can	be	understood	as	a	difficulty	to	see	repercussions	
of	actions	 from	the	distant	past,	but	an	ease	when	these	actions	are	 from	them	
near	past.	This	effect	is	explained	by	the	vanishing	gradient	problem	[11-12],	and	
is	the	reason	gradient-descent	methods	struggle	with	long-term	dependencies.		
	
A	 new	 architectural	 approach	 was	 proposed	 to	 help	 deal	 with	 long-term	
dependencies	called	NARX	recurrent	neural	networks	(nonlinear	autoregressive	
models	 with	 exogenous	 inputs)	 [13].	 Research	 from	 July	 2017	 found	 that	
although	 NARX	 networks	 are	 not	 immune	 to	 the	 vanishing	 gradient	 problem,	
they	tend	to	perform	much	better	with	long-term	dependencies	[14].	
	

𝑦 𝑡 =  𝑓(𝑢 𝑡 − 𝐷! ,… ,𝑢 𝑡 − 1 ,𝑢 𝑡 ,𝑦 𝑡 − 𝐷! ,… ,𝑦 𝑡 − 1 )	
	
The	previous	equation	represents	a	NARX	recurrent	neural	network,	where	u(t)	
and	y(t)	represent	input	and	output,	Du	and	Dy	describe	input	and	output	order,	
and	f	is	a	Multilayer	Perceptron.	
	
The	NARX	network	is	trained	in	a	Series-Parallel	architecture,	where	the	inputs	
and	targets	are	given	to	the	machine-learning	network,	the	model	then	learns	the	
relation	between	input	and	output	[15].	We	call	this	“open-loop”	training.	When	
we	use	the	NARX	to	predict,	we	provide	the	network	with	the	inputs	and	also	use	
the	 output	 of	 the	 network	 as	 one	 of	 the	 input	 to	 the	 next	 timestep	 prediction.	
This	 is	 called	 “closed-loop”	 prediction.	 Lin	 et	 al	 explain	 that	 the	 output	 delays	
help	the	network	propagate	gradient	information,	reducing	the	sensitivity	of	the	
network	to	long-term	dependencies.	
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2.4. Genetic	Algorithms	
Genetic	 algorithms	 (GA)	 are	 a	 common	 approach	 to	 solve	 optimisation	 and	
search	 problems	 using	 the	 same	 process	 as	 natural	 selection	 [16].	 They	 use	
genetic	manipulation	functions	such	as	crossover	and	mutation	to	create	better	
individuals.	We	will	be	basing	our	algorithm	on	Harvey’s	Microbial	GA	[17].	An	
important	element	of	the	GA	is	the	fitness	function	that	calculates	and	assigns	a	
score	to	every	individual’s	performance,	which	we	then	use	to	sort	and	eliminate.		

2.5. Braitenberg	vehicles	&	simulation	
To	 support	 and	 test	 our	 project,	 we	 will	 need	 a	 simulation	 capable	 of	
representing	the	behaviours	of	robots.	In	robotics	research,	it	is	common	to	use	a	
set	 of	 simple	 robots	 called	 Braitenberg	 Vehicles	 [18].	 These	 theoretical	 robots	
simulate	 neural	 connections	 between	 sensors	 and	 motors	 and	 can	 express	
multiple	behaviours	such	as	moving	towards	the	light	or	running	away	from	the	
light	(portrayed	below).	

� 	
	
	

	

	
	
Figure	2-2:	Example	of	Braitenberg	vehicles	2a	and	2b,	where	
2a	connections	incite	movement	away	from	the	light,	and	2b	
where	the	connections	incite	movement	towards	the	light	

	
The	advantages	of	using	these	vehicles	are	that	they	are	simple	to	produce	and	
have	a	wide	variety	of	possible	behaviours	from	simple	parameters.	Their	neural	
connections	 can	 be	 represented	 as	 a	 neural	 network	 with	 weights,	 which	 can	
represent	genes	for	the	genotype	of	the	GA’s	individuals.	Furthermore,	research	
has	been	done	on	optimising	 fitness	 functions	 for	Braitenberg	vehicles,	as	 they	
can	allow	a	GA	to	get	to	a	solution	faster	[19].	

2.6. Hierarchical	brains	
We	will	 be	 looking	 at	 the	 creation	 of	 a	multi-layer	 structure	 of	 vehicle	 control	
systems,	which	 resemble	 the	 functioning	of	 a	brain.	We	have	been	 inspired	by	
recent	 neuroscience	 studies	 to	 structure	 the	 control	 systems	 as	 a	 hierarchical	
brain	 structure	 [20-21].	 The	 result	 of	 such	 a	 structure	 has	 been	 shown	 to	
increase	metacognitive	ability	[22].	
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3. Methodology	&	plan	
	
We	 wish	 to	 create	 a	 project	 that	 can	 be	 understood	 and	 used	 by	 others,	 and	
create	 a	 code	 base	 that	 is	 easy	 to	 use,	 versatile,	 and	 scalable.	 This	 will	 allow	
further	development	for	this	project,	but	also	a	solid	ground	for	further	research.	
	

3.1. Nomenclature	
Here	we	will	define	our	chosen	nomenclature	for	special	terms.	
	
Model:	a	NARX	network	trained	to	represent	the	environment	
	
Vehicle,	Agent:	A	Braitenberg	vehicle	with	a	brain,	in	the	simulation	
	
Brain:	a	weighted	network	mapping	sensors	to	motors	
	
Control	System:	the	controlling	mechanism	of	a	vehicle,	in	this	case	a	brain	
	
Predicting:	using	a	model	to	get	the	next	state	of	a	system	from	the	current	state		
	
World:	simulated	environment	where	the	agent	is	present	
	
Offline/online:	 Offline	 refers	 to	 a	 process	 that	 is	 executed	 outside	 of	 the	
simulated	world,	whereas	online	refers	 to	a	process	 that	 is	executed	 inside	 the	
simulated	world.	
	
Small	/	large	models:	This	represents	the	number	of	hidden	layers	constituting	
the	model.	The	more	layers	a	network	has,	the	bigger	its	structure.	
		
Real	data	/	values:	Used	when	describing	the	data	a	model	is	using	to	predict.	A	
model	will	 look	 back	 for	 a	 certain	 number	 of	 states	 (number	 of	 delays)	when	
predicting	the	next	state,	if	the	past	states	contain	data	a	vehicle	has	collected	in	
the	simulation,	this	data	is	referred	to	as	real	data.		
	

3.2. Programming	
The	chosen	 language	 for	 this	project	was	Python,	 for	 its	 large	standard	 library,	
community-based	development	 providing	many	 custom	modules,	 and	 it’s	 code	
readability.	 Python	 is	 an	 increasingly	 popular	 language	 for	 data	 science	 and	
machine	learning,	and	has	multiple	libraries	for	neural	networks.	To	work	with	
Machine	 Learning	 libraries,	 a	 common	 approach	 is	 using	 Numpy	 for	 data	
structures	and	management,	 and	a	neural	network	 library	 such	as	Scikit-learn,	
TensorFlow,	or	Theano.	We	will	be	using	a	library	developed	by	Dennis	Atabay	
called	 Pyrenn,	which	 has	 been	 developed	 for	 the	 purpose	 of	 Recurrent	Neural	
Networks.	
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As	a	standard	good	practice	the	project	uses	Git,	a	Version-Control	Software	that	
allows	 simple	 change	 and	 progress	 logs,	 an	 easy	 way	 to	 backtrack,	 and	 a	
centralised	version	of	the	project	for	multi-user	development.	GitHub	can	also	be	
used	 for	 documenting	 the	 progress	 of	 the	 project	 in	 steps,	 to	 help	 with	 the	
understanding	of	the	implementation.	For	the	development	of	the	code,	we	chose	
to	 use	 JetBrain’s	 PyCharm,	 a	 powerful	 Python	 IDE	 complete	 with	 many	 code	
tools	and	visual	debugging,	useful	when	dealing	with	different	data	structures	in	
machine	learning.	
	
For	 the	 task	of	machine	 learning	and	neural	network	 training,	 to	help	with	 the	
large	network	 training	 times	a	 cloud	computing	 service	 can	be	used.	Microsoft	
Azure	 is	 a	 cloud	 computing	 service	 where	 users	 can	 upload	 Jupyter	 iPython	
Notebooks	to	help	with	processing	tasks.	We	have	used	this	service	to	help	with	
the	 long	 training	 time	required	 for	 some	big	models	of	 the	environment	 in	 the	
testing.	
	
The	project	code	can	be	found	on	GitHub	at	github.com/lucasrijllart/Sleep-Wake.	
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4. System	design	
	
In	 this	 section	 we	 will	 give	 an	 introduction	 to	 NARX	 networks,	 an	 in-depth	
explanation	of	 Sleep-Wake	 cycles,	 a	 short	description	of	 the	 simulation	design,	
and	an	overview	of	the	programming	implementation.	
	

4.1. NARX	neural	networks	
An	 Artificial	 Neural	 Network	 is	 a	 set	 of	 connected	 artificial	 neurons.	 These	
networks	 can	progressively	 improve	 their	 performance	 at	 tasks	 such	 as	 image	
recognition	(including	feature	detection,	e.g.	numbers,	faces),	customer	product	
recommendations,	or	new	predictions	for	a	system	(e.g.	stock	trading,	weather).	
	
To	further	explain	the	concept	of	a	neural	network,	we	can	consider	the	network	
to	represent	a	function	that	transforms	an	input	into	an	output.	As	an	example,	
we	can	use	the	network	in	Figure	4-1	A,	with	2	inputs	and	2	outputs.	To	retrieve	
the	inputs	from	the	outputs	we	simply	add	the	results	of	the	inputs	multiplied	by	
the	weights	of	each	connection.			
	
We	are	most	 interested	in	the	ability	to	predict	 future	states	for	our	agent,	and	
the	way	we	can	predict	the	next	value	is	by	using	our	output	as	a	new	input.	The	
network	can	iterate	through	states,	creating	a	prediction	at	timestep	t+1,	t+2,	…,	
t+n.	We	assume	these	predictions	can	only	be	correct	through	Takens	Theorem,	
as	only	 in	a	deterministic	environment	would	one	state	depend	on	its	previous	
states.	
	

	
Figure	4-1:	Representation	of	a	simple	neural	netowkr	and	a	NARX	network.	A)	A	simple	neural	network	
with	4	nodes	and	4	weighted	connections.	The	text	aside	details	the	functioning	of	it.	B)	A	NARX	network	

with	2	input	and	output	delays.	

	
	
	
	
	

A	
B	



	 	 Lucas	Rijllart	
	

	 12	

We	 will	 now	 introduce	 the	 concept	 of	 input	 and	 output	 delays.	 The	 NARX	
network	 functions	 just	 like	 a	 regular	 Recurrent	 Neural	 Network,	 except	 we	
define	how	many	steps	into	the	past	are	considered.	To	predict	the	next	state	of	
system,	 we	 could	 choose	 to	 only	 use	 the	 system’s	 current	 state,	 however	 this	
would	 not	 produce	 accurate	 results.	 By	 considering	 the	 previous	 states	 of	 the	
system,	the	network	obtains	more	 information	and	can	 increase	 its	accuracy	of	
prediction	of	 the	next	 state.	 Input	and	Output	delays	determine	 the	number	of	
previous	states	to	consider.	Delayed	inputs	represent	the	previous	known	states	
of	the	system,	whereas	delayed	outputs	represent	the	already	predicted	states	to	
be	used	as	information	leading	to	the	next	state.	
	
This	delay	mechanism	is	shown	in	Figure	4-1	B,	where	Mt	and	St	represent	Motor	
and	 Sensory	 values	 at	 time	 t,	 and	 (for	 simplicity)	 the	 network	 has	 access	 to	 1	
previous	 state	 of	 2	 Motor	 and	 Sensory	 values	 Mt-1	 and	 St-1.	 We	 use	 known	
previous	 Motor	 data	 and	 predicted	 Sensory	 data	 as	 the	 next	 input	 to	 the	
network.	Once	a	prediction	has	been	made,	the	network	enters	a	cycle	of	feeding	
new	data	along	predicted	data	to	obtain	the	next	prediction.	The	earliest	Motor	
information	available	 from	 the	 real	world	 then	gets	 removed	 to	allow	 the	new	
data	to	become	the	most	recent	at	time	t.	For	example,	all	data	at	time	t-1	would	
become	t-2,	and	t-2	would	become	t-3,	etc.	
	

	
Figure	4-2:	NARX	diagrams	from	Time	series	prediction	based	on	NARX	neural	networks:	an	advanced	

approach,	by	Xie	et	al,	p2.	

	
The	 two	 NARX	 architectures	 seen	 in	 Figure	 4-2	 are	 two	 different	 methods	 of	
using	the	network.	The	first,	Series-Parallel,	is	provided	both	inputs.	The	second,	
Parallel,	uses	one	output	as	the	next	input.	We	use	Series-Parallel	when	training	
a	 network,	 providing	 it	 with	 sensory	 and	 motor	 information	 to	 train	 the	
Multilayer	 Perceptron	 to	 match	 input	 to	 output.	 We	 use	 Parallel	 architecture	
when	 predicting	 sensory	 values	 for	 the	 prediction	 of	 trajectories,	 where	 the	
prediction	gets	fed	back	into	the	network	to	predict	the	next	states.	

4.1.1. What	does	modelling	mean?	
Our	network	is	trained	to	accept	2	sensory	and	motor	inputs	and	predict	the	next	
sensory	values.	This	allows	us	to	predict	the	next	state	(or	next	position)	of	our	
vehicle,	 with	 which	 we	 can	 iterate	 through	 many	 predictions	 and	 obtain	 a	
predicted	trajectory.	
	
We	call	this	a	model	of	the	environment	because	it	represents	an	understanding	
of	the	world	by	being	able	to	predict	what	happens	next.	Even	though	the	model	
is	 not	 visual	 or	 readable	 by	 a	 Human,	 the	 proof	 of	 its	 correctness	 lies	 in	 the	
accuracy	of	its	predictions.	However,	our	models	have	some	room	for	errors,	as	
they	are	only	used	to	navigate	in	the	general	correct	direction,	and	the	positional	
precision	of	the	prediction	is	less	important.	
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4.2. Sleep-Wake	cycles	
To	 improve	 the	 performance	 of	 a	 vehicle,	 its	 behaviour	 needs	 to	 be	 organised	
efficiently.	 The	 Sleep-Wake	 cycles	 provide	 our	 agent	 with	 a	 structured	
behaviour.	Cycles	allow	the	following:	

- Controlled	exploration,	to	only	collect	data	when	in	need	
- Improvement	strategy,	where	the	behaviour	is	optimised	for	the	situation	
- Goal-driven	approach,	to	try	and	efficiently	reach	the	objective	

	
Figure	4-3:	Diagram	of	the	separate	stages	of	one	Cycle.	This	diagram	shows	the	first	wke	stage,	sleep	stage,	

and	second	wake	stage.	

The	general	 idea	is	the	following:	explore	and	learn	the	environment	to	build	a	
model,	 evolve	 a	 new	 behaviour	 through	 predictions,	 and	 execute	 the	 best	
behaviour.	We	will	explore	each	of	these	stages	in	detail	below.	

4.2.1. Wake	–	learning	
This	 stage	 is	 to	 explore	 and	 learn	 the	 environment	 to	 train	 a	 model	 of	 said	
environment.	Wake	–	learning	can	be	summarised	in	the	following	steps:	

- Random	vehicle	exploration	
- Training	of	model	from	exploration	data	
- Accuracy	measure	through	prediction	error	

	
To	make	 the	 vehicle	 explore,	we	 create	 a	 set	 of	 random,	noisy	 commands	 that	
make	the	agent	perform	exploration	in	the	world.	The	agent	will	record	sensory	
and	motor	information	continuously,	and	order	it	chronologically.	
	
Once	 all	 of	 the	 information	has	been	gathered,	 the	data	 is	 passed	 to	 the	NARX	
network	and	the	model	begins	the	training.	This	may	take	some	time	depending	
on	the	size	of	the	model	and	the	number	of	delays	specified,	as	they	impact	the	
complexity	of	the	data	to	learn	from.	
	
After	the	model	has	finished	training,	we	can	test	its	accuracy	by	comparing	the	
accuracy	of	its	predictions	to	real	data.	To	perform	this	test	we	must	first	move	
the	vehicle	for	a	few	time	steps	to	gather	some	sensory	and	motor	data.	By	only	
passing	the	motor	information	to	the	network,	we	get	a	set	of	predictions	by	the	
model	of	the	missing	sensory	information.	We	can	now	compare	the	predictions	
to	the	real	values	gathered	by	the	vehicle	and	measure	the	extent	of	the	error	of	
the	model.	

4.2.2. Sleep	–	evolving	
This	 stage	 is	 responsible	 for	 the	 vehicle’s	 evolution	 of	 behaviour.	 It	 can	 be	
summarised	in	these	steps:	
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1. Run	a	Genetic	Algorithm	from	the	vehicle’s	position	that	uses	the	model	to	
predict	the	trajectories	of	the	GA	individuals.	

2. Obtain	an	optimised	Control	System	from	the	GA	
	

	
Figure	4-4:	Sleep	cycle	diagram.	This	diagram	shows	the	inner	workings	of	the	GA,	from	the	creation	of	the	

population,	to	the	mechanism	of	prediction,	and	fitness	calculation.		

The	 Genetic	 Algorithm	 uses	 tournament	 selection,	 crossover,	 and	 mutation	 to	
find	 the	 optimal	 brain	 network.	 The	 genotype	 of	 individuals	 consists	 of	 the	 4	
weights	in	the	brain	network;	one	gene	being	one	weight.	Tournament	selection	
is	the	process	of	selecting	two	individuals	at	random	and	comparing	their	fitness.	
The	individual	with	the	lowest	fitness	(loser)	is	subjected	to	crossover	with	the	
higher	 fitness	 individual	 (winner).	 Crossover	 is	 the	 process	 of	 replacing	 one	
individual’s	 gene	with	 the	 gene	 of	 another,	 and	 in	 this	 case	 the	winner’s	 gene	
replaces	 the	 loser’s.	 After	 crossover,	 the	 loser	 gets	 mutated,	 where	 there	 is	 a	
chance	that	a	gene	gets	modified	by	1%	of	the	gene’s	scale.	
	
Before	calculating	the	fitness	of	an	individual,	we	need	to	project	the	individuals’	
trajectory.	Every	individual	uses	the	same	past	data	coming	from	the	real-world	
vehicle.	We	pass	the	last	known	state	of	the	vehicle	to	the	model	as	input,	with	a	
set	of	2	sensory	values	and	2	motor	values.	The	model	will	then	predict	the	next	
state,	which	is	a	set	of	2	sensory	values.	These	two	values	then	need	to	be	passed	
in	 the	brain	network,	 that	 returns	 the	 two	corresponding	motor	values.	 It	 is	at	
this	point	that	each	individual	will	produce	a	different	set	of	motor	values.	These	
values	 get	 added	 to	 the	 individual’s	 list	 of	 sensory	 and	 motor	 data,	 and	 the	
mechanism	 is	 repeated	 with	 this	 latest	 set	 into	 the	 model.	 This	 process	 is	
repeated	for	a	set	amount	called	“look-ahead”,	that	determines	how	many	future	
states	to	predict.	
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Once	the	set	of	sensory	and	motor	data	has	been	built	from	predictions,	we	can	
calculate	 the	 fitness	 of	 that	 individual.	 The	 fitness	 equation	 is	 described	 as	
follows:	

𝐹 =
1
𝑛 𝑆!!

!

!!!

+
1
𝑛 𝑆!!

!

!!!

	

	
This	equation	depicts	the	addition	of	the	average	sensory	value	for	left	and	right	
sensors.	The	n	 represents	 the	total	number	of	values	 for	each	sensor,	and	both	
sums	represent	the	average	of	all	the	left	and	right	sensor	values.	The	resulting	
value	 is	 the	 fitness	 of	 the	 individual.	 The	 GA	 is	 set	 to	 iterate	 for	 a	 specified	
number	of	generations.	One	generation	equals	a	tournament	for	every	individual	
of	the	population,	meaning	that	with	a	population	of	10	individuals	executed	for	
2	generations,	we	will	have	10	*	2	=	20	tournaments.	
	
After	the	GA	has	finished,	it	returns	the	individual	with	highest	fitness	to	be	the	
selected	behaviour	for	the	next	stage.	

4.2.3. Wake	–	testing	
This	 stage	 simply	 consists	 of	 using	 the	 best	 behaviour	 returned	 by	 the	 sleep	
stage	into	the	world.	
	
Once	 the	 sleep	 stage	 is	 finished	 and	 the	 optimised	 brain	 has	 been	 given,	 we	
assign	 this	 brain	 to	 the	 current	 vehicle	 and	 execute	 it	 for	 a	 given	 number	 of	
iterations.	

4.2.4. Multiple	cycles	
It	would	be	possible	to	perform	another	cycle	after	the	first	one	has	ended,	which	
could	 be	 beneficial	 for	 evolving	 an	 optimised	 solution.	 The	 second	 sleep-wake	
cycle	 would	 model	 the	 environment	 described	 by	 the	 first	 model	 and	 control	
system.	This	means	it	would	learn	what	actions	are	possible	under	the	command	
of	the	first	brain.	

	
Figure	4-5:	Diagram	representing	Sleep-Wake	cycles	when	used	in	repetition	

The	 second	model	would	 capture	 the	 environment	 of	 the	 first	 evolved	 control	
system.	The	training	data	given	to	this	new	model	will	be	a	collection	of	random	
exploratory	 trajectories,	which	 already	 follow	 the	movement	 of	 the	 first	 brain.	
We	can	visualise	 this	 training	data	as	a	noisy	 control	 system,	which	 the	model	
can	learn	to	control	with	another	control	system.	
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The	 brain	 structure	 follows	 hierarchical	 structure,	 as	 observed	 in	 recent	
neuroscience	 research.	 In	 our	 case,	 we	 construct	 a	 list	 of	 brains	 where	 the	
sensory	 signal	 passes	 through	 one	 after	 the	 other	 until	 the	 last	 one,	 where	 it	
reaches	 the	 values	 of	 the	 motors.	 From	 one	 control	 system	 to	 the	 other,	 the	
motor	values	are	added	together	 to	create	 the	motor	value	 that	 is	 impacted	by	
every	control	system.	
	
This	mechanism	might	lead	us	to	simpler	modelling	tasks,	as	it	is	divided	across	
more	 than	 one	 model,	 and	 perhaps	 a	 better	 performance	 from	 the	 second	
model’s	predictions.	

4.3. Code	implementation	
The	following	is	an	explanation	of	the	implementation	of	this	project.	Let	us	first	
establish	the	functional	requirements.	
	
Functional	requirements:		

• Working	Braitenberg	simulation	
• Genetic	algorithm	for	vehicle	brains	
• NARX	network	used	to	model	and	predict	
• Sleep-Wake	cycle	manager	
• Controller	of	cycles	
• Data	collection	and	presentation	of	results	

	
From	this	specification,	we	construct	a	flow	chart	of	the	different	classes	present	
in	the	implementation.	The	diagram	is	shown	below,	in	Figure	4-1.	
	

	
Figure	4-6:	Flowchart	of	program	classes’	architecture	and	interaction	logic	

From	the	flowchart	we	can	see	that	the	Cycles	class	controls	most	of	the	system	
logic.	 The	 Cycles	 class	manages	 the	 Sleep-Wake	 cycles	 of	 a	 vehicle,	 controlling	
which	cycle	is	active	and	which	step	is	executed	next.	Cycles	uses	the	Simulator	
class	 to	 run	 the	 vehicle	 in	 the	 simulation,	 for	 example	 when	 the	 vehicle	 is	
collecting	data	to	train	the	network,	or	after	the	best	brain	has	been	returned	by	
the	GA.	The	Main	class	can	load	networks,	execute	cycles,	and	collect	data	from	
tests,	allowing	us	to	generalise	the	behaviour	from	the	vehicle.	
	
In	the	sleep	cycle,	the	Genetic	class	is	used	to	start	a	Genetic	Algorithm	with	the	
goal	of	evolving	a	brain	to	a	desired	behaviour.	As	the	 individuals	of	 the	GA	do	
not	 have	 access	 to	 the	 simulated	world,	 their	 trajectories	 are	 calculated	 using	
predictions	from	the	Narx	class,	which	will	predict	the	next	sensor	values	from	a	
current	state.	
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The	 Simulator’s	 main	 goal	 is	 to	 simulate	 the	 environment	 and	 run	 a	 vehicle	
inside	it.	It	renders	the	screen	with	the	sprites,	performs	calculations	on	sensory	
and	motor	 information,	and	updates	the	sprites	at	every	 iteration.	The	vehicles	
are	represented	by	the	Sprites	class,	which	holds	the	different	types	of	vehicles	
as	well	as	the	light	object.		
	

𝑆! =
10
∆𝑙!.!                  𝑆! =

10
∆𝑟!.!	

	
The	sensory	values	are	calculated	through	the	above	equation,	where	Sl	and	Sr	
represent	Sensor	left	and	Sensor	right,	and	∆𝑙	and	∆𝑟	are	the	Euclidean	distance	
of	the	sensor	to	the	light.			
	
	

	
Figure	4-7:	Class	diagram	of	the	proejct,	with	important	methods	and	fields.	

	
In	this	next	section	we	will	explain	the	functioning	of	the	classes	 in	detail	 from	
the	class	diagram	above.	
	
Sprites	
This	class	contains	all	of	 the	objects	that	will	be	used	 in	the	simulation.	Firstly,	
we	 need	 to	 describe	 the	 main	 vehicles	 we	 will	 use:	 BrainVehicle	 and	
RandomMotorVehicle.	 The	 former	 is	 a	 vehicle	 that	 updates	 its	wheels	 through	
the	 network	 of	 the	 brain,	 the	 latter	 uses	 random	 noise	 to	 create	 a	 random	
movement	 to	 explore	 the	 environment.	 The	 random	 vehicle	 is	 used	 in	 the	
collection	 of	 the	 sample	 data	 for	 the	 training	 of	 the	 network.	 We	 use	 a	 third	
vehicle	 called	ControllableVehicle	 for	 the	 sole	purpose	of	 tracing	 the	predicted	
behaviour	 of	 a	 GA-evolved	 brain	 on	 screen.	 It	 gets	 assigned	 a	 list	 of	 wheel	
velocities	and	re-enacts	what	they	dictate.	The	class	also	controls	the	Light	class,	
which	only	keeps	its	position	for	calculating	its	distance	to	a	sensor.	
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All	 sprites	 have	 access	 to	 a	 variable	 called	 “world_brains”,	 this	 is	 a	 list	 that	
represents	 the	 hierarchical	 brain	 structures	 present	 after	 abstracting	 the	
previous	 brain	 into	 the	 model.	 The	 Brain	 and	 Random	 Vehicles	 access	 the	
run_through_brain()	method,	which	passes	the	sensory	values	through	the	brain	
network	and	return	the	wheel	values.	All	vehicles	access	the	3	same	methods	for	
the	 calculation	 of	 sensor	 intensity,	 update	 of	 vehicle	 position,	 and	 update	 of	
vehicle	image	rotation.	
	
Simulator	
The	Simulator	class’s	only	goal	 is	 to	run	a	vehicle	 in	a	simulation.	 It	creates	an	
instance	of	PyGame	that	controls	the	screen	and	rendering.	A	vehicle	is	then	run	
for	a	number	of	given	iterations	in	the	environment.	
	
The	main	loop’s	logic	is	as	follows:	update	all	sprites	(movement,	values),	draw	
all	sprites	on	the	screen,	and	finally	draw	extras	such	as	sensor	and	motor	values	
on	the	vehicle	and	the	previous	and	current	trajectories	in	appropriate	colours.	
	
Narx	
The	Narx	 class	 controls	 the	NARX	network	used	 as	model	 of	 the	 environment.	
This	class	allows	us	to	create	and	train	a	new	network	from	sample	data,	predict	
the	 next	 sensory	 values	 from	 a	 given	 state	 (with	 or	 without	 known	 wheel	
values),	 saving	 a	 network	 to	 a	 file	 for	 future	 use,	 and	 load	 such	 file	 into	 a	
network.	The	 functions	use	 the	PyRenn	 library	 to	 control	 the	behaviour	of	 the	
network.	
	
Genetic	
The	Genetic	class	controls	the	working	of	the	GA.	The	are	two	possible	ways	of	
using	the	GA	class:	calling	run_offline()	will	start	a	GA	and	use	as	fitness	function	
the	 mean	 between	 the	 two	 sensor	 values	 which	 have	 been	 predicted	 by	 the	
NARX	network,	 or	 calling	 run_with_simulation()	which	will	 use	 the	 fitness	of	 a	
vehicle	that	has	access	to	the	real-world	data.	
	
The	 GA’s	 individuals	 are	 lists	 of	 integers	 representing	 the	 vehicle’s	 brain	
network	connections.	For	example,	the	brain	of	a	Braitenberg	Aggressor	is	[0,	5,	
0,	 5].	 The	 GA	 uses	 random	 tournament	 selection	 for	 two	 individuals,	 then	
crossover	and	mutation	on	the	less-fit	individual	to	create	a	new	brain.	
	
The	main	loop’s	logic	follows	this	order:	

- Create	population	and	calculate	the	fitness	of	every	individual	
- Iterate	for	the	number	of	generations	given	
- Pick	two	individuals	randomly	for	tournament,	highest	fitness	crosses	

over	the	loser,	then	the	result	gets	mutated	
- Place	the	new	individual	into	the	population	and	repeat	until	end	of	

generations	
	
The	GA	has	2	other	functions	that	are	used	outside	of	the	GA	class:	the	creation	of	
a	 random	 brain,	 and	 the	 calculation	 of	 the	 fitness	 of	 a	 real-world	 individual’s	
fitness,	both	of	which	are	used	when	running	tests.	
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Cycles	
The	Cycles	class	contains	all	the	functioning	of	the	different	Sleep-Wake	Cycles.	It	
manages	 the	 vehicle	 in	 3	main	 stages:	wake	 learning,	 sleep,	 and	wake	 testing.	
These	methods	will	run	the	different	steps	of	every	stage	on	a	vehicle,	managing	
the	data	flow	and	vehicle	position.	
Some	other	methods	are	present	to	help	deconstruct	the	tasks	such	as:	a	method	
to	collect	sample	 training	data	 to	give	 to	 the	model,	a	method	 to	 train	a	model	
with	 data	 and	 a	 number	 of	 configuration	 parameters,	 and	 some	 methods	 to	
format	data	into	the	correct	structure.	Some	methods	also	allow	one	full	cycle,	or	
multiple	cycles	to	execute.	
	
Main	
This	class	controls	what	test	to	run	and	the	configuration	of	the	cycles	as	well.	It	
allows	the	modification	of	parameters	for	all	methods	of	Cycles,	from	number	of	
GA	individuals	to	number	of	iterations	in	the	wake-testing	stage.	There	are	also	
Booleans	 that	 can	 be	 toggle	 to	 run	 different	 tests,	 which	 will	 be	 covered	 in	
Chapter	5.	
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5. Results	
	
In	 this	 section,	we	will	 evolve	 a	Braitenberg	 vehicle	 in	 our	 simulation,	 explore	
the	modelling	 of	 the	 environment,	 report	 on	 the	 evolution	 of	 a	 control	 system	
using	prediction	from	the	model,	and	try	to	iterate	through	another	Sleep-Wake	
cycle.	

5.1. Can	we	evolve	a	Braitenberg	Vehicle?	(Test	1)	
The	evolution	of	a	Braitenberg	vehicle	to	reach	a	 light	using	sensors	 is	a	trivial	
task,	 as	 they	 were	 designed	 to	 achieve	 such	 a	 behaviour.	 However,	 we	 will	
recreate	this	test	in	our	environment	to	establish	the	accuracy	of	our	simulator	
for	 the	 next	 results.	 This	 will	 also	 allow	 us	 to	 hone	 the	 parameters	 of	 the	
evolution	for	this	particular	case	of	vehicle.	
	
Goal:	

1. Create	a	Genetic	Algorithm	that	evolves	control	systems	(brain	network)	
with	goal	to	reach	the	light.	

	
To	perform	this	test,	we	create	a	random	initial	condition,	composed	of	a	set	of	
coordinates	 and	 angle,	 where	 the	 vehicle	 will	 spawn.	 The	 initial	 condition	 is	
excluded	from	a	radius	of	a	certain	distance	from	the	light,	as	we	do	not	wish	for	
the	vehicle	to	be	created	too	close	to	the	light.	The	goal	of	the	GA	is	to	maximise	
the	fitness	function,	which	we	have	described	as	the	average	sensor	values	of	the	
vehicle.	In	this	way	a	vehicle	will	have	a	high	fitness	if	it	stays	close	to	the	light	
the	longest.	Once	the	vehicle	is	created,	the	GA	is	executed	from	that	position	and	
returns	the	best	individual	possible	from	the	amount	of	generations	specified.	To	
prove	 the	 efficiency	 of	 the	 GA	 to	 find	 a	 successful	 brain,	 we	 can	 establish	 a	
benchmark	 test	 that	 compares	 the	 performance	 of	 evolved	 brains	 to	 that	 of	
random	brains.	
	
We	 can	 see	 from	 Figure	 5-1	 A	 that	 a	 vehicle	 has	 been	 successfully	 evolved	 to	
reach	the	light,	maximising	its	sensory	values.	This	may	seem	like	a	simple	task	
of	 going	 forwards,	 however	 the	 resulting	 brain	 was	 a	 “lover”	 configuration,	
where	 the	 vehicle	 slows	 down	 when	 it	 gets	 closer	 to	 the	 light.	 The	 GA	 has	
evolved	 a	 brain	 that	 reaches	 the	 light	 from	 its	 given	 initial	 position,	 with	 a	
starting	 population	 of	 20	 random	 individuals	 for	 40	 generations.	 The	 result	 of	
the	GA	is	the	brain	[1.9,	2.0,	-0.7,	-0.6]	with	a	fitness	of	3.3.	The	brain	returned	is	
a	variation	of	Braitenberg’s	Vehicle	3.A.	the	“lover”	vehicle.	It	orientates	towards	
the	light	at	first,	and	slows	down	when	it	approaches,	due	to	its	inhibitory	values	
on	the	second	sensor.	
	
The	 population’s	 maximum	 fitness	 increases	 drastically	 over	 time,	 with	 the	
average	slowly	increasing	too,	however	the	minimum	fitness	remains	around	0.5	
(from	 Figure	 5-1	 B).	 This	 stagnant	 minimum	 could	 be	 the	 result	 of	 using	 a	
wraparound	mutation	function,	which	forces	a	mutated	gene	that	has	reached	a	
value	greater	than	the	gene	scale	to	become	the	minimum	scale	value.	
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Figure	5-1:	Example	evolution	of	a	vehicle	and	benchmark	test	for	evolved	vehicles.	Example	trajectory	of	
an	evolved	vehicle	from	a	random	initial	condition	(a).	Fitness	of	population	over	iterations	with	maximum,	
minimum	and	avearage	(b).	Fitness	comparison	between	random	brain	vehicles	and	evolved	vehicle	from	
the	same	initial	conditions	(c).		Benchmark	test	for	50	evolved	vehicles	with	10	random	brains	from	each	of	

the	positions	of	the	evolved,		resulting	in	the	average	of	500	random	brains	(d).	

Figure	5-1	C	shows	the	resulting	fitness	of	an	evolved	vehicle	and	of	500	random	
vehicles,	all	of	which	have	the	same	starting	position.	This	graph	shows	that	the	
evolved	vehicle	performs	much	better	than	chance,	with	a	fitness	that	has	more	
than	tripled	the	best	of	the	500	random	brains.	
	
We	can	now	compare	the	average	fitness	of	evolved	vehicles	from	random	initial	
conditions,	to	understand	how	much	better	these	are	compared	to	chance.	This	
is	represented	in	Figure	5-1	D,	where	50	evolved	vehicles	are	plotted	and	their	
average	 is	 compared	 to	 the	average	of	500	random	vehicles.	This	graph	shows	
that	 the	average	evolved	brain	will	have	a	 fitness	of	0.67,	whereas	 the	average	
random	vehicle	 only	 0.35.	We	 can	 see	 that	 the	 fitness	 of	 an	 evolved	 vehicle	 is	
greatly	 superior	 to	 chance,	 which	 suits	 the	 expected	 results	 of	 the	 task.	 The	
evolved	vehicle’s	fitness	varies	significantly,	which	is	due	to	initial	conditions	of	
varying	difficulty,	random	initialisation	of	the	GA	population,	and	a	restriction	in	
allowed	time	to	solve.		
	
We	 now	 have	 set	 a	 benchmark	 of	 performance	 for	 evolved	 brains.	 Before	
evolving	 brains	 based	 on	 the	 predictions	 of	 their	 behaviour	 we	 need	 to	
understand	the	intricacies	of	environment	modelling.	
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5.2. Can	we	build	a	model	of	the	environment?	(Test	2:	Wake)	
In	 this	 section	 we	 will	 test	 the	 predictive	 ability	 of	 NARX	 networks	 and	 their	
performance	when	applied	to	more	complex,	plausible	scenarios.	

5.2.1. Performance	of	NARX	and	RNN	with	identical	initial	conditions	
To	establish	the	baseline	of	accuracy	of	a	NARX	network,	we	want	to	create	the	
simplest	environment	and	compare	its	accuracy	with	a	regular	recurrent	neural	
network,	and	the	impact	of	delays	on	predictions.	To	train	a	network	in	a	simple	
task,	 we	 create	 a	 training	 population	 of	 trajectories	 starting	 at	 the	 same	
coordinates	and	with	the	same	angle.	The	only	difference	between	them	is	their	
random	 trajectory,	which	 is	 identically	 random	 for	both	networks.	We	 refer	 to	
this	as	“identical	initial	conditions”.	
	
Goals:	

1. Compare	 the	 accuracy	 of	 a	 NARX	 network	 and	 a	 recurrent	 neural	
network.	 The	 result	 will	 show	 which	 network	 is	 more	 accurate	 in	 its	
predictions.	

2. Compare	 the	accuracy	of	 two	NARX	networks	 trained	on	 the	same	data,	
but	with	different	delays.	We	will	compare	both	their	accuracies	with	the	
same	exploring	vehicle,	to	see	what	difference	the	delays	of	the	networks	
make	in	the	predictions.	

3. Compare	 how	 accurate	 two	 networks	 of	 different	 delays	 predict	 on	
average	for	different	lengths	of	exploration.	This	test	will	allow	us	to	see	if	
a	 network	 that	 is	 trained	 to	 look	 further	 into	 the	 past	 can	 have	 better	
predictions	than	a	network	with	a	short	sight,	on	a	long	exploration	task.	

	
To	observe	the	accuracy	of	a	network,	we	run	a	new	random	vehicle,	determine	a	
cut-off	 point	 and	 remove	 all	 future	 sensory	 values	 from	 this	 point.	 This	 set	 of	
data	 (sensors	 and	 motors	 up	 to	 a	 point,	 then	 only	 motors)	 is	 given	 to	 the	
network,	 where	 it	 will	 predict	 the	 missing	 sensory	 values	 based	 on	 the	 first	
missing	state,	while	looking	backwards	in	time	for	a	certain	amount.	The	delays	
of	 the	 network	 define	 how	 many	 steps	 into	 the	 past	 it	 will	 consider	 for	 the	
prediction	of	 the	next	 state.	Once	 it	 predicts	 enough	values,	 the	historical	data	
will	 consist	 of	 only	 predicted	 values.	 At	 this	 point,	 we	 can	 anticipate	 that	 the	
prediction	 error	will	 increase,	 as	 there	 is	 no	 real-world	data	 available.	We	 can	
observe	 how	 accurate	 a	 network’s	 predictions	 are	 by	 comparing	 the	 value	
predicted	to	the	value	the	real	vehicle	recorded.	
	
As	expected,	NARX	networks	are	more	accurate,	and	need	less	training	than	an	
RNN	to	reach	good	performance.	From	Figure	5-2	A	and	C	we	can	see	 that	 the	
predictions	of	the	NARX	network	follow	the	initial	trend	of	the	values,	whereas	
the	RNN	cannot	replicate	the	trend	of	sensory	intensity.	
	
In	Figure	C	is	shown	the	predictions	of	two	networks,	one	trained	on	10	delays	
shown	 in	 red,	 the	 other	 on	 40	 delays,	 shown	 in	 green.	 The	 continuous	 line	
represents	where	the	predictions	are	based	off	of	real-world	data,	whereas	 the	
dotted	 line	 represents	 where	 the	 predictions	 are	 made	 based	 off	 of	 previous	
predictions.	Both	networks	finished	training	with	an	error	function	of	6.1e-6	for	
the	10	delays	and	7.5e-6	for	the	40	delays.	As	these	numbers	are	very	close,	their	
predictions	can	be	compared.	
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Figure	5-2:	First	environment	models.	Example	predictions	of	the	left	sensor	for	an	RNN	(a).	Trajectories	
used	to	train	the	networks,	20	vehicles	starting	at	coordinates	[300,	300]	with	an	angle	of	200	degrees	(b).	
Left	sensor	predictions	of	two	networks	for	a	random	vehicle	(c).	Both	networks	were	trained	for	200	

epochs,	with	data	of	20	trajectories	of	100	time	steps	each.	The	red	network	was	trained	with	a	delay	of	10,	
and	the	green	of	40.	Graph	of	average	Mean	Squared	Error	of	a	network	for	100	random	trajectories,	for	
increasing	trajectory	length	(d).	Also	present	is	a	line	showing	the	difference	between	the	two	network’s	

accuracy.	

	
We	can	see	that	the	red	network’s	line	initially	seems	to	follow	the	trend	of	the	
actual	 sensors	 accurately.	 The	 same	 can	 be	 said	 for	 the	 first	 half	 of	 the	 green	
network’s	 continuous	 line,	 accurately	predicting	 the	 sensors	 for	 30	 time	 steps,	
then	 diverging	 into	 high	 intensity.	 For	 the	 first	 10	 predictions,	 the	 network	
trained	on	10	delays	performs	better,	however	 for	 the	 first	40	predictions,	 the	
network	trained	on	40	is	more	accurate.	
	
This	 result	 suggests	 that	 the	 delays	 of	 a	 network	 determine	 for	 how	 long	 the	
network	will	try	and	produce	accurate	results.	We	can	also	see	that	even	though	
the	 red	 predictions	 start	 to	 diverge,	 they	 still	 follow	 the	 features	 of	 the	 real	
values,	which	suggests	that	if	a	network	can	very	accurately	predict	the	first	few	
values,	it	can	still	perform	decently	when	dealing	with	no	real	values.		
	
	

D	

B	
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We	 hypothesised	 that	 networks	 with	 longer	 delays	 could	 predict	 better	 for	
longer	 trajectories.	 From	 Figure	 5-2	 D	 we	 can	 see	 that	 the	 network	 with	 10	
delays	has	a	smaller	error	for	vehicles	of	60	to	80	time-steps.	After	80	time-steps	
the	 network	 of	 40	 delays	 consistently	 maintains	 a	 lower	 error	 than	 the	 red	
network,	 and	while	 the	 error	 still	 increases	with	 the	 number	 of	 iterations,	 the	
difference	between	the	accuracy	of	the	two	networks	also	increases.	The	test	was	
run	for	longer	and	the	bigger-delay	network	always	performed	better	for	longer	
trajectories.	The	graph’s	lines	aren’t	smooth	because	the	initial	conditions	could	
be	 disadvantageous	 to	 the	 situation,	 however	 we	 are	 more	 interested	 in	 the	
difference	between	the	two	networks.	
This	result	suggests	that	longer	delays	allow	the	models	to	learn	longer	patterns	
of	 trajectories,	 helping	 them	match	 it	 to	 situations	 in	 the	 future,	 and	maintain	
better	predictions.	
	
The	 NARX	 network’s	 predictions	 were	 accurate	 to	 some	 degree,	 however	 the	
task	is	simplified	by	the	identical	initial	conditions.	We	need	a	general	model	of	
the	environment	that	is	not	dependant	on	the	position.	
	

5.2.2. Random	initial	conditions	
Starting	 from	 the	 same	 position	 isn’t	 biologically	 plausible;	 therefore	 we	 can	
simulate	 a	 diversity	 of	 information	 by	 randomising	 the	 initial	 conditions.	 The	
goal	of	this	test	is	to	train	models	with	random	data	and	understand	whether	a	
model’s	accuracy	is	affected	by	a	training	data	of	diversified	initial	conditions.	
	
Goals:	

1. Observe	 the	predictive	accuracy	of	a	highly	 trained	random-data	model.	
We	will	compare	the	predictions	of	the	model	to	the	real-world	values	as	
seen	in	the	previous	tests.	

2. Run	many	random	vehicle	trajectories	and	compare	the	error	generated	
by	the	predictions	to	check	whether	the	model	can	predict	from	random	
starting	positions.	

3. Compare	the	performance	between	networks	trained	with	random	initial	
conditions	and	identical	initial	conditions.		

	
To	perform	the	last	goal	accurately,	we	need	to	train	both	networks	with	vehicles	
having	 the	 same	 trajectory	 noise,	 and	 test	 them	 on	 the	 same	 set	 of	 randomly	
positioned	trajectories.	Then	repeat	for	many	models	to	get	a	generalised	result.			
	
The	well-performing	model	was	 given	200	 randomly	positioned	 trajectories	 of	
100	 time	 steps,	 trained	 with	 a	 delay	 of	 40	 for	 300	 epochs,	 which	 reached	 a	
training	error	function	of	6.7e-5.	From	the	graph	at	Figure	5-3	A,	the	predictions	
were	perfect	for	the	whole	time	it	had	real	data	and	the	next	iteration	where	it	
had	 all	 predicted	 values	 from	 the	 real	 ones.	 After	 these	 two	 sets	 of	 excellent	
predictions,	 the	 rest	 of	 them	 follow	 precisely	 the	 trend	 of	 the	 real	 values,	 but	
with	 some	 offset,	 generating	 an	 increasing	 error.	 However,	 the	 predictions	
remain	rather	accurate	up	until	timestep	300,	which	demonstrates	an	incredible	
predictive	performance	from	the	model.		
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Figure	5-3:	Random	initial	conditions	tests.	a)	A	graph	of	the	predicted	and	actual	 left	sensor	values	of	an	
exploring	 vehicle,	 this	 was	 performed	 for	 500	 iterations,	 with	 predictions	 starting	 at	 iteration	 50.	 b)	
Accuracy	test	on	model,	consists	of	300	test	trajectories	of	200	time	steps.	The	model	used	for	both	a)	and	
b)	was	trained	with	200	trajectories	of	100	iterations,	40	delays,	[4,	20,	40,	20,	2]	layers,	and	300	epochs.	c)	
50	tests	where	2	models	were	trained,	one	with	random	initial	conditions	and	the	other	with	identical	initial	
conditions,	then	both	tested	on	the	same	100	random	vehicles,	results	sorted	by	difference	of	error	

With	 predictions	 starting	 at	 iteration	 50,	 and	 real	 values	 disappearing	 from	
delays	 at	 iteration	 90,	 the	 model	 can	 predict	 from	 previous	 predictions	 for	 5	
cycles	data	before	error	becomes	significant.	In	Figure	5-3	B,	the	same	model	is	
tested	with	300	trajectories	of	200	time	steps.	The	average	means	squared	error	
for	both	sensors	is	around	0.013,	however	around	250	of	these	tests	are	close	to	
0.	A	hypothesis	of	why	some	tests	receive	such	a	high	error	is	that	the	training	
data	never	reaches	the	position	of	the	light;	therefore	the	model	has	never	seen	
sensory	intensity	of	that	 level	and	cannot	predict	how	intense	the	light	reading	
would	be	when	reaching	it	with	an	exploring	vehicle.	
	
These	 two	 results	 confirm	 that	 it	 is	 possible	 to	 accurately	 generalise	 an	
environment	through	a	model	when	the	training	data	is	collected	from	random	
trajectories.	
	
Figure	5-3	C	shows	the	average	error	of	 two	models,	 in	orange	the	model	with	
random	training	and	 in	blue	the	model	with	 identical	starting	training.	We	will	
refer	 to	 them	 as	 the	 “random	 model”	 and	 “identical	 model”	 for	 short.	 The	
average	error	of	the	random	model	is	of	5.2e-4,	and	1.3e-3	for	the	identical.	This	
proves	the	random	model	performs	better	when	tested	on	random	data,	showing	

A	
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that	the	other	model	predicts	worse.	All	other	values	between	the	models	are	the	
same	 (training	 data	 noise,	 testing	 data);	 even	 the	 network’s	 initialisation	 is	
generalised	as	we	perform	the	test	for	50	models	of	each.	
	
This	 result	puts	 forward	 that	 the	model’s	performance	was	not	determined	by	
the	identical	conditions	of	the	previous	test,	and	that	random	training	data	only	
makes	 a	 model	 more	 accurate.	 However,	 in	 the	 case	 of	 a	 real	 robot,	 the	 data	
gathered	 to	 train	 the	model	would	 not	 be	 random	 trajectories,	 and	we	 need	 a	
new	way	of	collecting	training	data.	

5.2.3. 3.	Continuous	initial	conditions	
For	 the	 training	of	a	model	 to	become	more	realistic,	we	can	generate	 training	
data	by	running	one	vehicle	for	many	time	steps,	segment	that	information	and	
train	 the	model	with	 it.	By	 following	simple	Machine	Learning	 theory,	we	train	
the	model	with	a	random	sample	of	50%	of	the	data.	
	
Goals:	

1. Compare	 the	performance	of	 a	model	 trained	on	continuous	data	 to	 the	
previous	models	seen.	

2. Assess	 whether	 this	 realistic	 method	 could	 be	 successful	 with	 physical	
robots.	

	

	
	

	 From	training	positions	 Random	positions	
Average	error	 4.751	e-05	 2.538	e-03	

Figure	 5-4:	A)	 Graph	 of	 combined	 Mean	 Squared	 Error	 for	 3	 networks	 trained	 with	 different	 methods.	
Random	initial	conditions	describe	training	where	the	data	is	randomly	gathered.	Identical	initial	conditions	
maintain	the	trajectories’	starting	coordinates	and	angle	identical.	Continuous	initial	conditions	follow	the	
collection	method	of	a	real	robot,	by	having	one	trajectory	start	at	the	end	of	the	previous.	Three	networks	
are	 trained	with	data	 consisting	of	30	 trajectories	of	50	 iterations	with	a	delay	of	10	and	100	epochs	 for	
every	test,	and	are	tested	on	100	random	trajectories	of	50	iterations	with	predictions	starting	at	t=10.	The	
error	value	is	the	combination	of	the	MSE	for	the	100	predicted	trajectories,	and	all	3	models	are	tested	on	
the	same	data.	B)	Table	showing	average	error	for	10	models	depending	on	the	test	positions.	Both	values	
are	average	error	for	500	tests	of	100	timesteps,	models	tested	were	small	with	10	delays	and	trained	with	
continuous	data.	The	tests	were	from	random	positions	from	training	data	and	random	positions.	
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From	 the	graph	at	Figure	5-4	A,	 the	average	error	 for	 the	 continuous	model	 is	
higher	than	the	random	model,	however	it	remains	very	similar	to	the	identical	
model.	This	may	be	because	the	collection	by	continuous	movement	observes	a	
similar	area	than	the	identical,	and	also	may	lead	to	the	vehicle	straying	further	
from	the	light,	never	to	come	back.	This	could	potentially	create	a	worse	model,	
as	it	would	never	experience	intense	sensory	values	from	being	close	to	the	light,	
and	therefore	not	be	able	to	predict	high	values	when	testing.	
	
As	 the	 average	 error	 of	 continuous	 training	 is	 similar	 to	 the	 identical	 training,	
and	we	previously	have	shown	that	the	latter’s	predictions	were	still	acceptable,	
we	can	assume	that	the	continuous	model’s	predictions	are	acceptable.	For	more	
than	40	tests,	the	error	value	of	the	continuous	model	was	practically	identical	to	
the	random	model.	From	this	result,	we	can	confirm	that	the	accuracy	of	models	
trained	with	continuous	initial	conditions	is	worse	than	the	random	training,	but	
acceptable.	
	
Furthermore,	 the	networks	 are	 tested	on	 random	data,	which	 is	not	 a	 realistic	
method	for	testing	the	network.	If	we	assume	that	a	real	robot	collected	the	data	
and	then	uses	that	model	for	predictions,	the	robot	will	never	be	in	a	location	it	
has	never	seen,	unlike	the	random	testing,	and	the	accuracy	should	remain	high.	
The	 table	 in	 Figure	 B	 shows	 10	 continuous-trained	 models	 being	 tested	 2	
different	 ways:	 one	 from	 the	 position	 it	 would	 be	 after	 training	 and	 random	
positions	all	around	the	environment.	The	models	performs	much	better	on	the	
first	set	of	test	data,	which	shows	that	a	network	will	perform	better	on	the	data	
it	is	trained	on.	
	
We	 conclude	 that	 a	 real	 robot	 gathering	 training	 data	 in	 continuous	 intervals	
would	be	an	acceptable	method	of	gathering	training	data	for	a	model.	Now	that	
the	 environment	 has	 been	 successfully	modelled,	we	want	 to	 explore	whether	
the	predictions	can	be	used	to	evolve	a	vehicle’s	control	system.	
	

5.3. Can	we	evolve	a	Control	System	based	on	the	model?	(Test	3:	Wake	
Sleep	Wake)	

Now	that	we	can	train	accurate	models,	we	need	to	use	their	predictions	for	the	
fitness	 of	 the	 individuals	 of	 the	 GA.	 Below	 are	 the	 early	 results	 of	 bad	
performance,	and	then	a	method.	In	these	sections	below	we	explore	the	failures	
and	successes	of	these	evolved	brain	networks.	
	

5.3.1. 1.	Ballistic	trajectory	
We	want	 to	 evolve	 a	 brain	 from	 a	 random	 initial	 condition	 to	 go	 towards	 the	
light,	by	only	using	a	prediction	of	its	trajectory	as	measure	of	fitness.	
	
Goals:	

1. Observe	 the	 evolutionary	 results	 of	 brain	 networks	 based	 on	 their	
predicted	trajectories	

2. Compare	 the	 success	 of	 the	 individuals	 evolved	 using	 predictions	 and	
real-world	data.	
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The	result	of	a	GA	using	predictions	of	vehicles	("predictive	GA"	for	short)	will	be	
extremely	 dependent	 on	 the	 result	 of	 the	 predictions	 from	 the	 model.	 For	
example,	if	the	model	does	not	predict	that	a	vehicle's	sensor	intensity	increase,	
but	 the	 real	 trajectory	 approaches	 the	 light,	 that	 individual's	 fitness	 will	 be	
wrongly	 low.	 To	 compare	 the	 success	 of	 the	 predictive	 GA	 to	 the	 real-world	
evolution	of	a	vehicle	("world	GA"	for	short),	we	can	collect	the	real	sensory	data	
of	 the	 prediction	 vehicle,	 to	 assess	 how	well	 the	 vehicle	 did	 in	 the	 simulation	
instead	of	its	predictions.	
	

	

	
EXAMPLE EVOLVED 
CONTROL SYSTEMS 

[LL , LR , RR , RL ] 
[2.6, 0.8, 1.6, 3.7] 
[4.0, 5.0, 2.9, 3.9] 
[1.6, 5.0, 5.0, 3.5] 

[3.2, 4.6, 5.0, 2.2] 

[4.9, 3.7, 5.0, 2.0] 
[4.2, 4.4, 3.9, 3.0] 
[3.0, 4.7, 4.8, 2.1] 

Figure	5-5:	First	results	of	evolved	control	systems.	A)	A	representative	example	of	a	ballistic	control	
system	and	a	correctly	evolved	vehicle	with	access	to	the	world	as	comparison.	B)	7	example	evolved	

control	systems.	The	brain	network	is	composed	of	4	connections:	left	sensor	to	left	wheel	(LL),	left	sensor	
to	right	wheel	(LR),	right	sensor	to	right	wheel	(RR),	right	sensor	to	left	wheel	(RL).	The	maximum	value	for	

motors	is	5.	

From	the	results	of	Figures	5-5,	the	vehicles	get	closer	to	the	light	but	don’t	have	
a	control	system	that	is	attracted	by	light.	It	seems	the	GA	tried	to	create	the	best	
trajectory	that	would	be	closest	to	the	light,	not	finding	the	control	system	of	a	
generalised	 “aggressor	 brain”.	 The	 evolved	 control	 systems	 describe	 ballistic	
trajectories	 from	 its	 starting	 position,	 meaning	 the	 control	 systems	 are	 not	
generalised,	and	would	not	work	from	a	different	position.	
	
A	 generalised	 “aggressor”	 brain	would	 be	 composed	 of	 two	 strong	 LR	 and	 RL	
connections,	and	two	weak	LL	and	RR	connections.	It	is	clear	that	in	the	example	
evolved	control	systems	in	Figure	5-5	B,	the	connections	do	not	follow	this	trend,	
and	 instead	 are	 just	 optimised	 circular	 trajectories.	 This	 is	why	 the	 vehicle	 in	
Figure	A	starts	with	a	correct	angle	of	approach,	but	does	not	turn	towards	the	
light	when	close,	and	instead	turns	away	to	complete	the	circle.	
	
To	help	create	more	generalised	control	systems,	the	unused	training	data	can	be	
used	as	testing,	and	use	those	positions	in	the	fitness	function	so	that	a	fit	brain	
will	need	to	generalise	across	many	different	positions.	

5.3.2. 2.	Generalisation	-	Optimisation	of	the	fitness	function	
To	 minimise	 ballistic	 trajectory,	 we	 calculate	 the	 fitness	 from	 many	 different	
starting	points,	forcing	vehicles	to	be	successful	in	more	situations.	
	
	

A	
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Goals:	
1. Check	 if	 using	 test	 data	 for	 fitness	 forces	 control	 systems	 to	 generalise	

their	movement.	
2. Compare	 the	 performance	 of	 the	 evolved	 control	 system	 to	 the	

benchmark	of	random	brains	and	a	world	GA.	
3. Generalise	the	performance	of	predicted	GA’s	compared	to	world	GA’s.	

	
The	evolution	of	a	control	system	results	in	a	vehicle	that	is	attracted	to	the	light	
and	shoots	through	it,	as	seen	in	Figure	5-6	A.	This	is	the	desired	behaviour	of	an	
“aggressor”	vehicle,	it’s	brain	network	being	[1.6,	3.0,	1.5,	3.3].	From	Figure	B	it	is	
clear	that	cross-connections	(LR	&	RL)	are	the	strongest	in	every	example.	This	
confirms	 that	 the	 brains	 have	 lost	 their	 ballistic	 aspect	 and	 now	 maintain	
generalised,	light-attracted	behaviour.	
	

	

B	
Example evolved 
control systems 
[LL , LR , RR , RL ] 
[1.6, 3.0, 1.5, 3.3] 
[0.5, 1.5, 2.9, 3.3] 
[0.1, 3.6, 1.0, 4.8] 
[0.7, 2.4, 0.6, 3.5] 
[1.2, 4.3, 0.9, 3.9] 
[1.9, 4.0, 1.8, 4.3] 

	

	 	
	

Figure	5-6:	Results	of	generalised	evolved	control	systems.	a)	Representative	example	of	an	evolved	control	
system	tested	on	multiple	positions,	resulting	into	a	generalised	behaviour.	B)	list	of	example	control	
systems.	c)	Benchmark	test	for	predicted	vehicle	in	a),	the	evolved	control,	and	1000	random	brains.	d)	

Fitness	comparison	between	prediction-evolved	and	world-evolved	vehicles	for	100	tests,	and	the	average	
fitness	for	100	random	vehicles	for	every	test.	The	model	used	to	predict	with	is	the	same	as	sub-chapter	

5.2.2,	and	the	values	are	sorted	by	increasing	difference	in	fitness.	

Figure	5-6	C	shows	 the	evolved	prediction	vehicle	 is	better	 than	chance	 in	 this	
case,	 and	 as	 expected	 performed	 worse	 than	 the	 GA.	 We	 also	 notice	 that	 the	
aggressor	individual	has	a	lower	fitness	than	the	evolved	and	predicted,	which	is	
because	 both	 of	 them	 are	 slightly	 optimised	 for	 their	 situations	 and	 test	 data.	
This	is	a	desired	effect,	as	we	want	the	most	performing	control	system	for	the	
position	of	the	agent.	
	

A	
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We	can	now	compare	the	average	performance	of	the	predicted	brains	compared	
to	 the	 world-evolved	 ones.	 The	 graph	 in	 Figure	 5-6	 D	 plots	 50	 prediction-
evolved,	world-evolved	and	random	vehicles	sorted	by	increasing	difference.	The	
average	fitness	for	random	vehicles	was	calculated	by	testing	100	random	brains	
for	 every	 test.	 The	 world-evolved	 vehicles	 seem	 to	 perform	 poorly	 for	 many	
tests,	 the	 reason	 is	 because	 we	 decided	 to	 restrict	 the	 maximum	 number	 of	
iterations	 to	exclude	answers	 that	would	 take	 too	 long.	The	average	 fitness	 for	
world-evolved	 agents	 is	 0.5242,	 whereas	 predictive	 agents	 have	 an	 average	
fitness	of	0.4127.	
	
The	 difference	 of	 fitness	 between	 world-evolved	 and	 predicted	 brains	 is	
significant,	however	they	do	follow	the	same	trends.	When	the	evolved	performs	
poorly	 because	 of	 restrictions,	 the	 predicted	 also	 performs	 poorly.	 Another	
reason	why	world-evolved	 brains	 achieve	 higher	 average	 fitness	 is	 because	 of	
those	very	high	 scores	 for	 the	 last	 few	 tests.	These	are	produced	because	 they	
can	sometimes	reach	the	light	and	circle	around	it,	whereas	the	prediction	brains	
cannot	 predict	 far	 enough	 to	 develop	 circling,	 and	 therefore	 only	 “shoot-
through”	 the	 light.	 On	 average,	 the	 predicted	 brains’	 performance	 is	 exactly	
between	 chance	and	 the	optimal	 solution.	This	 result	 is	 successful	 as	 it	 proves	
the	brains	using	model	perform	on	average	better	than	chance.	
	
Figure	A	also	shows	that	the	predicted	behaviour	(in	grey)	did	not	reach	or	circle	
around	the	 light,	meaning	the	behaviour	generated	by	that	predicted	trajectory	
was	extended	successfully	 to	satisfy	 the	environment.	The	predicted	behaviour	
represents	the	look-ahead	of	the	GA	when	predicting	vehicle	trajectories.	In	the	
case	shown	in	Figure	A,	the	look-ahead	nearly	reached	the	light,	however	this	is	a	
special	 case,	 as	most	 of	 the	 random	 starting	 positions	 are	 far	 enough	 that	 the	
predictions	 don’t	 get	 close.	 This	 confirms	 that	 the	 behaviour	 generated	 is	
scalable.	
	
Now	that	the	prediction-evolved	vehicles	show	an	acceptable	fitness,	but	are	still	
ranked	 lower	 than	 world-evolved	 agents,	 we	 should	 explore	 the	 trade-off	
between	fitness	lost	and	time	gained.	
	

5.3.3. Time	comparison	between	world	and	prediction	vehicles	
We	now	want	to	explore	how	much	time	has	been	spared	from	using	predictions	
instead	of	the	real	world.	
	
We	can	analyse	the	 factors	 that	 increase	the	number	of	 time-steps	of	a	vehicle.	
Both	 vehicles	 add	 time-steps	 after	 the	 GA	where	 they	 execute	 their	 optimised	
behaviours.	For	the	world-evolved	agent,	the	time-steps	are	accumulated	by	the	
trial	 and	error,	whereas	 for	 the	predicted	agent,	 the	 time-steps	 come	 from	 the	
training	 of	 the	 model.	 The	 following	 describes	 the	 trial	 and	 error	 and	 model	
training	process:		
	

• Trial	 and	 error.	 The	 GA	 calculates	 the	 fitness	 of	 an	 individual	 by	
executing	 that	 individual	 in	 the	world	 for	 a	 number	 of	 time-steps.	 This	
represents	the	majority	of	the	time	taken	by	the	world-evolved	vehicle,	as	
a	fitness	calculation	is	executed	every	iteration	of	the	GA.		
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• Data	 for	model	 training.	This	represents	the	majority	of	the	time	taken	
by	 the	 prediction-evolved	 vehicle,	 as	 the	 agent	 needs	 to	 collect	 a	
substantial	amount	of	information	before	training	the	model.		

	
Goal:	 Compare	 number	 of	 time	 steps	 used	 by	 prediction-evolved	 and	 world-
evolved	vehicles.	
	

	 World-evolved	agent	 Prediction-evolved	agent	
Time-steps	per	agent	 100200	 20200	

Figure	5-7:	Table	comparing	world-evolved	and	prediction-evolved	vehicle	time-steps'	in	the	real	world	

The	results	in	the	table	above	are	for	the	network	and	GA	used	in	Figure	5-6	D.	
The	world-evolved	vehicle	has	accumulated	the	time-steps	for	25	individuals	of	
200	 time-steps	 for	 20	 generations.	 In	 fact,	 25 ∗ 200 ∗ 20 = 100,000 .	 The	
prediction-evolved	 vehicle’s	 time-steps	 are	 created	 by	 a	 training	 data	 of	 200	
samples	of	100	 iterations.	Both	results	 then	add	200	 time-steps	of	 the	post-GA	
execution.	
	
We	can	see	that	the	prediction-evolved	agent	uses	5	times	fewer	time-steps	than	
the	world-evolved	agent.	This	is	because	the	trial	and	error	of	the	GA	would	take	
an	unrealistic	amount	of	time	to	execute	in	the	real	world.	Moving	the	trial	and	
error	 to	 offline	 processing	 was	 to	 minimise	 time	 spent	 in	 the	 world,	 and	 the	
results	clearly	show	that	by	training	a	model,	the	time	taken	is	inferior.	
	
Now	that	we	have	proved	the	success	of	one	Sleep-Wake	cycle,	could	it	make	the	
task	easier	to	execute	two	cycles?	

5.4. Is	it	possible	to	have	a	second	Sleep-Wake	Cycle?(Test	4:	Two	cycles)	
By	running	a	second	cycle,	we	might	be	able	to	rely	less	on	the	accuracy	of	one	
model,	and	share	the	complexity	of	modelling	the	environment	and	reaching	the	
objective	to	multiple	models.	The	following	are	the	chronological	steps	executed:	

1. Evolve	a	vehicle	from	a	model	and	execute	it	in	the	simulation	
2. Collect	a	new	set	of	data	from	an	exploratory	vehicle	subjected	to	the	first	

control	system	
3. Train	a	new	model	based	on	the	collected	data	
4. Test	the	model’s	prediction	accuracy	on	random	samples	
5. Evolve	a	new	control	system	based	on	the	predictions	of	the	new	model	
6. Execute	 the	 new	 control	 system	 in	 the	 simulation	 and	 check	 the	

prediction	error	
	
The	following	sub-sections	are	observations	on	the	results	of	this	test.	

5.4.1. Downwards	spiral	
The	 first	 step	 of	 this	 test	 is	 to	 try	 and	 share	 the	 workload	 by	 training	 a	
moderately	accurate	model	(model	1),	 then	another	in	the	second	cycle	(model	
2).	After	training	the	first	model,	we	tested	its	accuracy	and	checked	the	result	of	
the	 evolution	 was	 acceptable.	 After	 collecting	 new	 data,	 model	 2	 was	 trained	
with	 less	data,	and	 fewer	hidden	 layers	 than	model	1.	Once	 the	model	 finished	
training,	 its	predictions	were	 tested	on	a	 few	samples	and	 the	error	generated	
was	immense.	No	accuracy	was	conserved	from	model	1.	
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The	same	test	was	conducted,	but	with	a	large	model	2.	This	new	model	had	lots	
of	 training	 data,	 a	 large	 layer	 structure	 and	 number	 of	 delays,	 and	 intensely	
trained.	 Even	 with	 this	 much	 training,	 the	 second	 model’s	 error	 remained	 as	
inaccurate	 as	 the	 previous	 model	 2.	 Even	 the	 first	 10	 predictions	 weren’t	
accurate.	
	
We	 conclude	 that	 this	 issue	 is	 a	 problem	 of	 downwards	 spiralling.	 If	 the	 first	
model	 isn’t	 accurate,	 all	 future	 models	 built	 on	 those	 inaccuracies	 will	 only	
generate	more	errors.	Therefore,	we	must	try	with	an	accurate	first	model.		
	

5.4.2. Second	model	error	
Now	that	we	have	concluded	the	first	model	needs	to	be	accurate,	we	will	start	
with	 a	 guaranteed	 precise	 model,	 and	 train	 a	 smaller	 second	 model.	 The	
following	is	a	collection	of	hypotheses	and	results	that	were	conducted.	
	
	

	 	
	

	 	
Figure	5-8:	Graphs	representing	the	accuracy	of	predictions	for	the	second	model,	in	the	second	Sleep-Wake	

cycle.	A)	Visual	of	the	simulation	representing	the	vehicle	with	predicted	and	actual	trajectory	for	the	
second	cycle.	The	trajectory	coloured	in	pink	is	the	result	of	the	first	cycle	(correctly	heading	towards	the	
light).		B,	C	&	D)	Accuracy	of	the	sensory	prediction	for	a	test	with	respectively,	a	small	model	and	20	

delays,	large	model	and	20	delays,	and	large	model	with	40	delays.	

	
	

A	
B	

C	 D	
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Hypothesis	 1:	 A	 small	model	with	 little	 training	 data	 suffices	 for	 an	 accurate	
model.	
Once	 the	 bulk	 of	 the	 modelling	 process	 is	 performed	 by	 the	 accurate	 model,	
perhaps	only	a	small	model	 is	needed	for	the	second	cycle.	Model	2	will	have	a	
restricted	 environment	 to	 model,	 therefore	 a	 better	 accuracy	 and	 low	 error	
accumulation.	 This	 will	 allow	 us	 to	 predict	 accurately	 far	 into	 the	 future	 and	
reach	the	objective.	
	
Figure	5-8	B	proves	this	hypothesis	wrong,	where	a	simple	model’s	predictions	
for	the	first	20	time-steps	(including	real	data)	are	not	accurate.	Perhaps	a	bigger	
model	would	maintain	an	acceptable	level	of	accuracy.	
	
Hypothesis	2:	A	model	needs	substantial	training	data	and	a	large	structure	for	
maintaining	accuracy	in	the	second	cycle.	
Model	2	was	trained	with	the	same	amount	of	training	data	as	model	1,	with	the	
same	structure,	and	same	epochs.	At	worst,	this	model	should	perform	as	well	as	
the	model	of	the	first	cycle.	
	
Once	again,	the	accuracy	of	the	second	model	drops	significantly.	However,	from	
Figure	 C	 we	 see	 that	 the	 predictions	 with	 real	 data	 are	 considerably	 more	
accurate	than	the	predictions	without	real	data.		
	
Hypothesis	3:	Models	in	the	second	cycle	need	to	be	trained	with	more	delays	to	
maintain	accuracy.	
To	 test	whether	 the	second	cycles	makes	predictions	harder	without	 real	data,	
we	 create	 the	 same	 model	 but	 with	 40	 delays.	 If	 this	 hypothesis	 is	 true,	 the	
resulting	model	should	maintain	acceptable	accuracy	for	all	predictions	with	real	
data	available.	
Figure	D	disproves	this	hypothesis,	as	we	can	see	that	even	when	the	model	still	
has	access	to	real	data,	the	predictions	have	a	high	error.	We	have	now	trained	
larger	models	for	the	second	cycle	with	no	acceptable	resulting	accuracy.	
	
Other	tests	performed	include:	creating	a	model	that	can	deal	with	forwards	and	
backwards	movement,	and	a	creation	of	GA	individuals	with	negative	values.	
	
Conclusion:	
After	 having	 evolved	 a	 vehicle	 on	 a	 good	 model,	 and	 obtaining	 a	 favourable	
behaviour,	we	are	unable	to	train	an	accurate	second	model.	We	hypothesise	that	
the	 second	 model	 isn’t	 capable	 of	 learning	 trajectories	 when	 its	 training	 data	
depends	 on	 a	 first	 model,	 perhaps	 because	 the	 first	 model	 will	 always	 have	
inaccuracies	that	will	be	part	of	the	data.	
	
Without	 acceptable	 model	 accuracy,	 the	 predictions	 cannot	 be	 trusted	 when	
calculating	the	fitness	of	an	individual;	therefore	the	research	of	multiple	sleep-
wake	cycles	was	halted.	
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6. Discussion	
	
In	this	section	we	will	discuss	the	implications	and	limitations	of	the	results,	then	
mention	possible	future	research.	
	
Our	results	show	the	successful	building	of	a	model	of	the	environment	using	a	
NARX	network.	Although	the	model	cannot	be	visually	confirmed	as	correct,	we	
have	 tested	 its	 accuracy	 by	 predicting	 test	 data	 and	 analysing	 the	 prediction	
error.	 Results	 show	 that	 the	model	 can	 accurately	 predict	 a	 number	 of	 future	
states	of	the	system.	We	conclude	that	NARX	networks	can	successfully	model	an	
environment,	 delivering	 acceptable	 performance	 even	 when	 faced	 with	 long-
term	dependencies.	
		
We	 performed	 research	 on	 the	 realism	 of	 the	 model	 training	 method	 and	
reported	 that	 the	method	 could	 be	 extended	 to	 a	 robot	 in	 a	 real	 environment,	
where	it	would	collect	data	continuously	to	train	a	model.	The	results	show	that	
a	 model	 trained	 on	 such	 data	 maintains	 an	 acceptable	 level	 of	 accuracy.	 This	
shows	the	technique	can	be	extended	to	real	applications.	
	
From	a	correct	model,	we	have	evolved	a	control	system	to	reach	the	objective	
with	 a	 performance	 significantly	 better	 than	 chance.	 This	 result	was	 observed	
using	 a	 highly	 trained	 model	 in	 a	 simple	 environment.	 For	 a	 real	 world	
application,	 the	environment	would	be	more	 complex	and	 therefore	 the	model	
would	also	need	to	be	highly	trained	and	proven	to	be	accurate.	Extending	this	
test	 to	a	 real	 robot	would	allow	us	 to	prove	 the	scalability	of	 this	 technique	 to	
more	complex	environments.	
	
The	 behaviour	 obtained	 from	 an	 evolved	 control	 system	 scaled	 to	 reach	 the	
original	objective.	The	cycle	generalised	a	control	system	for	a	simple	problem,	
creating	 a	 brain	 attracted	 to	 light;	 however	 the	 success	 of	 this	 method	 could	
depend	 on	 the	 simplistic	 nature	 of	 the	 problem.	Although	 the	 cycles	 created	 a	
generalised	 behaviour	 scaled	 from	 a	 short	 prediction,	 it	 is	 possible	 a	 more	
complex	 task	 would	 not	 provide	 such	 successful	 results.	 The	 individuals’	
genotype	 only	 contained	 4	 genes,	 which	 proves	 to	 be	 a	 simple	 task.	 A	 more	
complex	 problem	would	 be	more	 difficult	 to	model	 and	 to	 correctly	 evolve	 an	
optimised	control	system.		
	
It	is	clear	that	world-evolved	agents	perform	better	through	their	ability	to	test	
behaviours	further	into	the	future	than	the	predicted	agent’s	foresight.	However,	
using	 predictions	 significantly	 reduces	 the	 amount	 of	 time	 needed	 to	 obtain	 a	
better-than-chance	 answer.	 If	 we	 were	 to	 extend	 this	 method	 to	 a	 real-world	
application,	 we	 will	 still	 have	 to	 consider	 the	 two	 factors	 of	 time	 increase.	 A	
complex	 environment	 would	 increase	 the	 amount	 of	 gathered	 training	 data	
needed,	increasing	the	time	taken	by	the	Sleep-Wake	cycles.	However,	this	would	
also	 increase	 the	size	of	 the	Genetic	Algorithm	to	evolve	an	optimal	 individual,	
which	 increases	 the	 time	 of	 the	 world-evolved	 answer.	 In	 conclusion,	 the	
reduction	 in	 time	experienced	will	 probably	be	 conserved	 correctly	with	more	
complex	environments	and	tasks.	
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Our	unsuccessful	results	on	the	repetition	of	Sleep-Wake	cycles	leave	us	with	the	
question:	 If	 the	 accuracy	 of	 the	 second	 model	 could	 be	 improved,	 would	 the	
second	cycle	simplify	the	problem	and	provide	better	solutions?	Our	hypothesis	
is	 that	 the	 second	 model	 would	 learn	 to	 manipulate	 the	 control	 system	
appropriately,	 which	 would	 increase	 its	 success	 greatly.	 More	 research	 on	
multiple	cycles	is	needed,	in	a	different	environment,	to	examine	their	potential.	
	

6.1. Future	work	
This	 project’s	 research	 can	 be	 extended	 in	 multiple	 ways,	 from	 exploring	 the	
limitations	of	one	cycle	to	applying	this	technique	to	other	problems.	
	
To	further	the	work	on	the	success	of	one	cycle,	the	problem	could	be	modified	
to	be	more	complex,	with	multiple	light	sources	or	moving	lights.	This	algorithm	
could	be	 transformed	 into	 a	 search	problem,	where	 the	 objective	 is	 to	 explore	
the	whole	 environment	 in	 hopes	 of	 building	 the	 perfect	model.	 The	 algorithm	
could	 also	 be	 used	 to	 create	 obstacle	 avoidance	 behaviour.	 This	 technique’s	
robustness	 can	 be	 explored	 by	 removing	 a	 sensor	 or	motor	 at	 an	 unexpected	
time.	
	
It	would	be	interesting	to	apply	Sleep-Wake	cycles	to	other	known	AI	problems	
such	as	the	mountain	car	problem	[23].	Where	the	stuck	mountain	car	needs	to	
go	backwards	to	gain	momentum	to	overcome	the	next	hill.	The	OpenAI	Gym	is	a	
collection	of	AI	problems	where	users	can	submit	their	algorithms	[24].	It	would	
be	 interesting	 to	 apply	 Sleep-Wake	 cycles	 to	 these	 problems	 to	 compare	 the	
performance.	
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7. 	Conclusion	
	
This	project	 focused	on	creating	more	 intelligent	and	adaptable	behaviours	 for	
robotics,	 which	 would	 perform	 well	 in	 a	 new	 environment	 or	 unexpected	
situation.	Our	method	provides	an	organised	optimisation-driven	behaviour	that	
aims	to	let	the	agent	create	its	own	solutions	to	problems.	The	Sleep-Wake	cycles	
allow	 the	 agent	 to	 model	 its	 own	 environment,	 and	 then	 perform	 offline	
optimisation	to	find	a	suitable	behaviour.	
	
We	have	achieved	 to	 train	accurate	models	of	 the	environment	with	a	 realistic	
data	 collection	 method.	 A	 control	 system	 was	 successfully	 evolved	 with	 a	
generalised	and	scalable	behaviour,	performing	better	than	chance.	This	method	
can	now	be	 tested	on	other	problems	 to	 evaluate	 its	 performance	on	different	
environments	 and	 problems.	More	 research	 is	 needed	 to	 experiment	with	 the	
use	 of	 multiple	 Sleep-Wake	 cycles,	 which	 might	 improve	 the	 efficiency	 of	 its	
problem	solving	abilities.	
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